Assignment 5

Hand in no. 4, 6, and 7 by October 28, 2024.

- 1. Determine whether \mathbb{Z} and \mathbb{Q} are complete sets in \mathbb{R} .
- 2. We define a metric on \mathbb{N} , the set of all natural numbers by setting

$$d(n,m) = \left|\frac{1}{n} - \frac{1}{m}\right|$$

- (a) Show that it is not a complete metric.
- (b) Describe how to make it complete by adding one new point.
- 3. Optional. Let (X, d) be a metric space. Fixing a point $p \in X$, for each x define a function

$$f_x(z) = d(z, x) - d(z, p).$$

- (a) Show that each f_x is a bounded, uniformly continuous function in X.
- (b) Show that the map $x \mapsto f_x$ is an isometric embedding of (X, d) to $C_b(X)$. In other words,

$$||f_x - f_y||_{\infty} = d(x, y), \quad \forall x, y \in X.$$

(c) Deduce from (b) the completion theorem asserting that every metric space has a completion.

This approach is shorter than the proof given our notes. However, it is not so inspiring.

- 4. Let T be a continuous map on the complete metric space X. Suppose that for some k, T^k becomes a contraction. Show that T admits a unique fixed point. This generalizes the contraction mapping principle in the case k = 1.
- 5. Show that the equation $x = \frac{1}{2}\cos^2 x$ has a unique solution in \mathbb{R} .
- 6. Show that the equation $2x \sin x x^4 + x = 0.001$ has a root near x = 0.
- 7. Let $f : \mathbb{R} \to \mathbb{R}$ be C^2 and $f(x_0) = 0, f'(x_0) \neq 0$. Show that there exists some $\rho > 0$ such that

$$Tx = x - \frac{f(x)}{f'(x)}, \quad x \in (x_0 - \rho, x_0 + \rho),$$

is a contraction. This provides a justification for Newton's method in finding roots for an equation.